skip to main content


Search for: All records

Creators/Authors contains: "Green, Matthew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a homogeneously selected sample of 15 779 candidate binary systems with main sequence primary stars and orbital periods shorter than 5 d. The targets were selected from TESS full-frame image light curves on the basis of their tidally induced ellipsoidal modulation. Spectroscopic follow-up suggests a sample purity of 83 ± 13 per cent. Injection-recovery tests allow us to estimate our overall completeness as 28 ± 3 per cent with Porb < 3 d and to quantify our selection effects. 39 ± 4 per cent of our sample are contact binary systems, and we disentangle the period distributions of the contact and detached binaries. We derive the orbital period distribution of the main-sequence binary population at short orbital periods, finding a distribution continuous with the lognormal distribution previously found for solar-type stars at longer periods, but with a significant steepening at Porb ≲ 3 d, and a pile-up of contact binaries at Porb  ≈ 0.4 d. Companions in the period range of 1–5 d are an order of magnitude more frequent around stars hotter than $\approx 6250\, \rm K$ (the Kraft break) when compared to cooler stars, suggesting that magnetic braking shortens the lifetime of cooler binary systems. However, the period distribution in the range 1–10 d is independent of temperature. We detect resolved tertiary companions to 9.0 ± 0.2 per cent of our binaries with a median separation of 3200 au. The frequency of tertiary companions rises to 29 ± 5 per cent among the systems with the shortest ellipsoidal periods. This large binary sample with quantified selection effects will be a powerful resource for future studies of detached and contact binary systems with Porb<5 d.

     
    more » « less
  2. ABSTRACT

    AM CVn-type systems are ultracompact, helium-accreting binary systems that are evolutionarily linked to the progenitors of thermonuclear supernovae and are expected to be strong Galactic sources of gravitational waves detectable to upcoming space-based interferometers. AM CVn binaries with orbital periods ≲20–23 min exist in a constant high state with a permanently ionized accretion disc. We present the discovery of TIC 378898110, a bright (G = 14.3 mag), nearby (309.3 ± 1.8 pc), high-state AM CVn binary discovered in TESS two-minute-cadence photometry. At optical wavelengths, this is the third-brightest AM CVn binary known. The photometry of the system shows a 23.07172(6) min periodicity, which is likely to be the ‘superhump’ period and implies an orbital period in the range 22–23 min. There is no detectable spectroscopic variability. The system underwent an unusual, year-long brightening event during which the dominant photometric period changed to a shorter period (constrained to 20.5 ± 2.0 min), which we suggest may be evidence for the onset of disc-edge eclipses. The estimated mass transfer rate, $\log (\dot{M} / \mathrm{M_\odot } \, \mathrm{yr}^{-1}) = -6.8 \pm 1.0$, is unusually high and may suggest a high-mass or thermally inflated donor. The binary is detected as an X-ray source, with a flux of $9.2 ^{+4.2}_{-1.8} \times 10^{-13}$ erg cm−2 s−1 in the 0.3–10 keV range. TIC 378898110 is the shortest-period binary system discovered with TESS, and its large predicted gravitational-wave amplitude makes it a compelling verification binary for future space-based gravitational wave detectors.

     
    more » « less
  3. ABSTRACT

    We present the discovery of the eclipsing double white dwarf (WD) binary WDJ 022558.21−692025.38 that has an orbital period of 47.19 min. Following identification with the Transiting Exoplanet Survey Satellite, we obtained time series ground based spectroscopy and high-speed multiband ULTRACAM photometry which indicate a primary DA WD of mass $0.40\pm 0.04\, \text{M}_\odot$ and a $0.28\pm 0.02\, \text{M}_\odot$ mass secondary WD, which is likely of type DA as well. The system becomes the third-closest eclipsing double WD binary discovered with a distance of approximately 400 pc and will be a detectable source for upcoming gravitational wave detectors in the mHz frequency range. Its orbital decay will be measurable photometrically within 10 yr to a precision of better than 1 per cent. The fate of the binary is to merge in approximately 41 Myr, likely forming a single, more massive WD.

     
    more » « less
  4. Abstract

    We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with aPorb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,MsdB= 0.383 ± 0.028Mwith a massive white dwarf companion,MWD= 0.725 ± 0.026M. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESAmodel predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESAstellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92Mwith a thick helium layer of 0.17M. This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.

     
    more » « less
  5. AM CVn systems are a rare type of accreting binary that consists of a white dwarf and a helium-rich, degenerate donor star. Using the Zwicky Transient Facility (ZTF), we searched for new AM CVn systems by focusing on blue, outbursting stars. We first selected outbursting stars using the ZTF alerts. We cross-matched the candidates with Gaia and Pan-STARRS catalogs. The initial selection of candidates based on the Gaia BP-RP contains 1751 unknown objects. We used the Pan-STARRS g-r and r-i color in combination with the Gaia color to identify 59 high-priority candidates. We obtained identification spectra of 35 sources, of which 18 are high priority candidates, and discovered 9 new AM CVn systems and one magnetic CV which shows only He-II lines. Using the outburst recurrence time, we estimate the orbital periods which are in the range of 29 to 50 minutes. We conclude that targeted followup of blue, outbursting sources is an efficient method to find new AM CVn systems, and we plan to followup all candidates we identified to systematically study the population of outbursting AM CVn systems. 
    more » « less